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Abstract

Symbolic cognitive architectures typically have an implicit
representation of time. Actions taken occur in a sequential or-
der, but reasoning about specific temporal relationships among
objects and events is typically beyond the architecture’s capa-
bilities. In this paper, we describe an extension of the Icarus ar-
chitecture to include an episodic belief memory and an explicit
representation of temporal relationships in long-term concep-
tual memory, along with the inference process that supports
them. We then demonstrate the temporal reasoning system
on an American-rules football play-recognition task. Finally,
we discuss the implications of our temporal representation and
reasoning system to the larger architecture.
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ral logic

Introduction

The ability to remember and reason about objects and events
over time is fundamental to human cognition. Tulving (1983,
2002) describes episodic memory as a temporal or contex-
tual memory that captures the experiences of an entity. This
history can then be used to improve decision making by form-
ing part of an internal model of the environment, by keeping
track of long-term goals, or by improving behavior through
learning. Many cognitive tasks, such as determining efficient
search strategies (Howes, 1993) and discourse comprehen-
sion (Kintsch, 1998), also depend on the ability to store and
recall information about past experiences.

In spite of the broad applicability of episodic memory and
temporal reasoning, few efforts at constructing computational
models of such capabilities have been made. In the artifi-
cial intelligence community, case-based reasoning (Kolodner,
1993) is the work most relevant to episodic memory. Here, a
case typically describes the solution to a previously encoun-
tered problem which the system can then retrieve and adapt to
new problems. However, case structures typically do not gen-
eralize well and are usually hand-crafted for specific tasks.

In the context of cognitive architectures, Altmann and John
(1999) added an episodic memory to Soar, although it was
task specific and was not integrated into the larger architec-
ture. More recently, Nuxoll and Laird (2004, 2007) inte-
grated a general-purpose episodic memory module into Soar,
and then implemented cognitive capabilities such as learn-
ing from past successes and failures on top of the new mod-
ule. ACT-R (Anderson & Lebiere, 1998) also supports a lim-
ited form of episodic memory. The architecture’s chunking
mechanism stores partial copies of working memory for sub-
sequent retrieval, but does not support retrieval of temporally

related items, and does not distinguish between memories of
prior events and beliefs about the present. All of these sys-
tems are similar in that they focus on storing, retrieving and
using entire episodes in support of cognitive tasks.

None of the aforementioned systems provide an explicit
language or inference mechanism that allows them to rea-
son about specific temporal relationships among individual
events, entities or objects in the environment. In this paper,
we extend the ICARUS architecture to (1) represent and retain
beliefs about past experiences, (2) represent specific temporal
relationships in long-term conceptual memory, and (3) rea-
son about temporal relationships based on the stored beliefs
about the past and present. Moreover, we show that these ex-
tensions fit naturally into the existing architecture, and that
they expand ICARUS’ capabilities substantially without the
addition of new or sophisticated modules.

We begin our discussion with a brief review of ICARUS.
We then describe the changes to the architecture required
to support the representation of and reasoning over tempo-
ral structures. Next, we provide a demonstration of temporal
reasoning in ICARUS on a football play-recognition task. We
then move on to discuss the implications of the representa-
tional and reasoning capabilities on the broader architecture,
including a discussion of related and future work. Finally, we
conclude with a few remarks about the lessons that may be
drawn from this work.

A Brief Review of ICARUS

ICARUS is a physical agent architecture whose objective is to
qualitativly model results on human cognition. The architec-
ture incorporates many ideas from traditional work on cog-
nitive modeling, and also maintains that cognition is closely
tied to perception and action so that a model must be linked
to some external environment. ICARUS shares many features
with other agent architectures like Soar (Laird, Rosenbloom,
& Newell, 1986), ACT-R (Anderson, 1993), and Prodigy
(Minton, 1990), such as a distinction between short-term and
long-term memories, and goal-driven but reactive execution.
IcARUS also includes many novel features including a com-
mitment to separate storage for conceptual and skill knowl-
edge, and indexing skills by the goals they achieve. In this
section we review knowledge representation, inference and
execution in ICARUS to provide a basis for our discussion
of temporal representation and reasoning. Langley and Choi
(2006) provide a more detailed description of the architecture,



including its support for problem solving and learning.

Like other architectures, [CARUS operates in cognitive cy-
cles. On each cycle, it perceives objects in the environ-
ment and places their descriptions into a short-term percep-
tual buffer. The architecture then performs inference based
on these percepts by matching them against the hierarchical
structures stored in long-term conceptual memory, thus let-
ting the architecture deduce a set of beliefs consistent with
both the environment and its conceptual knowledge. ICARUS
then matches these beliefs against the knowledge structures
stored in long-term skill memory to determine which skills to
apply in order to achieve its current goal. After each executed
action, ICARUS perceives a new state, and begins a new cycle.

Long-term conceptual memory in ICARUS contains a set of
hierarchically organized logical structures. Each concept de-
scribes a class of environmental situations using a relational
language similar to PROLOG. Each first-order clause includes
a head, with the concept name and arguments, and a body that
describes the conditions under which the concept applies. In-
ference then matches the concept definitions against the con-
tents of perceptual memory to form beliefs, which are simply
concept instances in which the arguments have been replaced
with specific symbols from perceptual memory. These be-
liefs are then matched against other concept definitions in a
bottom-up manner to produce new, higher-level beliefs. This
process continues until the architecture deduces all possible
beliefs for the current environment state.

Execution in ICARUS begins with a goal, which is simply a
belief that the architecture wants to make true.! Given a goal,
the architecture attempts to find a skill in long-term memory
that both applies in the current state and achieves the goal.
Skills take a form similar to conceptual clauses; they have a
head, which states the skill’s objective and corresponds to the
head of some concept, and a body, which states the conditions
that must be present in order to initiate or continue executing
the skill along with the actions that must be taken or subgoals
that must be achieved in order to achieve the skill’s goal. Like
conceptual memory, skill memory is organized hierarchically.
After an appropriate skill is found, the architecture must find
an applicable path through the subgoal hierarchy down to an
executable action, ensuring that all of the intervening sub-
goals have their start conditions satisfied. If no such path
exists, then ICARUS falls back on problem solving, which we
do not consider here.

Note the close correspondence between concepts and
skills, and between beliefs and goals. This relationship fig-
ures centrally in the architecture’s performance and learning
systems, and makes the goal processing, execution and infer-
ence procedures highly interdependent. Execution relies on
goal processing to determine when goals have been achieved.
Both procedures rely on inference to produce the beliefs that
the architecture matches against goals and skill conditions.
The tight integration of the inference and execution mod-

'Note that unlike the inferred beliefs in memory, a goal may
leave arguments unbound.

ules thus qualifies ICARUS as a unified cognitive architec-
ture (Newell, 1990). As we will see, this helps to expand
the power of the temporal representation beyond the concep-
tual memory and the inference procedures without requiring
substantial modification to other modules in the architecture,
such as execution or learning.

Temporal Representation and Reasoning

Representing and reasoning over time, particularly in the con-
text of an episodic memory, plays an important role in a va-
riety of cognitive tasks. However, past efforts at including
episodic memories into cognitive architectures tended to re-
sult in either substantial modification of the existing modules
or in the addition of entirely new architectural modules as in
Soar (Nuxoll & Laird, 2004). In the following, we outline a
set of natural extensions that provide ICARUS with the abil-
ity to represent and reason over time. In particular, we draw
attention to the ways in which the representation and mecha-
nisms of the existing architecture made such a major expan-
sion in capability possible given only minor changes to the
architecture.

Representing and reasoning over time in ICARUS requires
several minor changes to the architecture. First, ICARUS must
maintain some notion of the current time in the environment.
Second, the belief representation expands to (1) annotate be-
liefs with the time periods over which they held (2) retain
beliefs held in the past. Next, the concept language is aug-
mented to exploit the temporal properties of beliefs, and to
encode temporal constraints as concept antecedents. Finally,
the inference process must expand to account for the added
representational complexity.

Our initial implementation of temporal support in [CARUS
assumes that the architecture receives the current time as a
percept. The architecture itself does not maintain an internal
sense of passing time. The perceived time may trivially corre-
spond to the cycle number, but this is not required. The only
requirement is that the perceived time increase monotonically
from one cycle to the next.

Given the availability of the current time, the next step is to
expand the representation of beliefs to include start and end
time stamps. The start time stamp indicates the first time at
which a belief held true, while the end time stamp indicates
the last time at which the belief held continuously. The archi-
tecture uses a special symbol, NOW to indicate the current time.
Notice that the time stamps do not indicate the period over
which an event occurred, but only time over which the belief
in that event held. Percepts are not similarly time stamped, as
perceptual memory continues to represent the ICARUS’ per-
ceptions in the current time step only.

This augmented belief representation allows ICARUS to
distinguish beliefs about past events from beliefs about the
present. Now we can expand belief memory to retain all of
the beliefs held by ICARUS throughout an episode. This is
equivalent to providing the architecture with an episodic be-
lief memory, whereas previously belief memory was updated



Figure 1: Diagram of the pass play observed by ICARUS with
annotations indicating actions taken by individual players.
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on each cycle to include only those beliefs that held on the
current cycle. All of the beliefs contained in the episodic
memory are generated through inference, which is based on
the agent’s percepts, so belief memory maintains a record of
experiences in the environment from ICARUS’ perspective.

The importance of episodic memory is well established,
but the memory alone provides little improvement to an ar-
chitecture’s capabilities. To exploit the episodic memory, two
minor changes to the concept language are required. First,
the :relations field, which lists the lower-level concepts
that support a higher-level definition, expands to reference
the time stamps assigned to beliefs. Second, we add a new
:constraints field that represents mathematical operations
on and comparisons of specific time stamp values referenced
in the :relations field. Thus, the field lets ICARUS use time
constraints as antecedents to concepts.

The final modification to the architecture is the expansion
of its inference process to support the changes to belief and
conceptual memory. The fundamental procedure, which is a
bottom-up computation of the deductive closure of concep-
tual long-term memory with the belief and perceptual mem-
ories, remains unchanged. Likewise, the matching process
used to determine whether a particular concept instance (be-
lief) should be inferred also remains unchanged. The only
differences between the existing inference process and the re-
vised process are that (1) the time stamps and temporal con-
straints must be matched in addition to the percepts, relations
and tests fields, and (2) temporally adjacent instances of the
same belief are merged into a single temporal belief that cov-
ers both. No new specialized control is required.

Looking beyond inference, the execution module also re-
quires only minor changes to support the new concept and
belief representations. Skill syntax requires no changes, but
we add the assumption that conditions (beliefs) required for
a skill to either start or continue execution must hold in the
current time step (end time stamp equal to NOW). No further
changes to skills are necessary because skill heads (goals)

Figure 2: Diagram of observed play with annotations indicat-
ing higher-level goals of individual players and player units.
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correspond to the heads of defined concepts. The concept
definitions therefore contain the temporal constraints needed
to define the content of the skill body. This is a key benefit
of the close relationship between inference and execution in
ICARUS.

The problem solving and learning modules have not yet
been revised to support temporal concepts and beliefs, so we
do not comment on them here. However, we discuss the is-
sues that arise in the discussion section. In the following
section, we demonstrate temporal concepts, beliefs and in-
ference in ICARUS by using them to recognize football plays
observed from video footage.

An Illustrative Example

The ability to remember past experiences and to relate them
temporally to other experiences is critical in recognizing com-
plex behaviors. Here we demonstrate the temporal inference
module’s ability to recognize complex behaviors as they un-
fold over time. Specifically, we apply ICARUS to interpret the
offensive passing play diagrammed in Figure 1 as executed by
an eleven player college football team and observed as video
footage from an overhead camera.

Figure 1 shows the sequence of actions performed by in-
dividual players. ICARUS perceives information about each
player on the field (including the defense, which is not shown
in the diagram) in each video frame, or every 1/30" of a sec-
ond. The goal is for ICARUS to interpret the behavior of the
players, both individually and as a team. Figure 2 shows a
higher-level view of player behavior, and illustrates the type
of interpretation that ICARUS must produce.

ICARUS assumes that low-level perceptual information,
such as pixel-based video footage, has already been processed
into a symbolic format. Specifically, all domain objects must
be described by some combination of symbolic and numeric
attributes. We therefore rely on the results of video post-
processing procedures (Hess & Fern, 2007; Hess, Fern, &
Mortenson, 2007) to serve as the percepts, rather than the



Table 1: Sample concepts from the football domain.

Table 2: Percepts and inferred beliefs given Table 1 concepts.

; Convert player activity perception into a belief
((agent-action ?agent ?action)
:percepts  ((agent ?agent team OFFENSE action ?activity))
rrelations  ((action-mapping ?activity ?action)
(agent-direction ?agent ?dir)))

; Convert player direction of motion into a belief
((agent-direction ?agent ?dir)
:percepts  ((agent ?agent direction ?dir team OFFENSE)))

; 2agent moved in direction ?dir
((moved ?agent ?dir)
relations  (((agent-action ?agent MOVE) ?act-start NOW)
((agent-direction ?agent ?dir) ?dir-start NOW)))

; 2agent has possession of ?ball
((possession ?agent ?ball)
:percepts  ((ball ?ball carriedby ?agent)))

s Some ?agent had possession of ?ball in a previous time step
((possession-before-now ?ball)
rrelations  (((possession ?agent ?ball) ?start ?end))
:constraints ((< ?start NOW)))

s 2agent received the snap of ?ball. True if:
s (1) ?agent has just received possession of ?ball, and
; (2) no other player has had possession of ?ball
((snap ?agent ?ball)
rrelations  (((possession ?agent ?ball) NOW ?p-end)
(not (possession-before-now ?ball))))

s ?passer dropped back after receiving the snap
((dropped-back ?passer ?ball)
rrelations  (((snap ?passer ?ball) ?snap-start ?snap-end)
((possession ?passer ?ball) ?poss-start NOW)
((moved ?passer S) ?mov-start NOW))
:constraints ((< ?snap-end ?poss-start)))

raw video itself. In this case, ICARUS perceives the identity,
role (such as quarterback or running back), team (offense or
defense), location, direction and current activity (such as run-
ning or blocking) of each of the 22 players on the field, along
with information about the ball carrier and current time.

We also provided ICARUS with a set of 44 temporal con-
cept definitions sufficient for interpreting the observed play.
Table 1 lists a subset of the concepts which are sufficient for
interpreting the quarterback’s (QB) drop-back after receiving
the snap. This corresponds to the first leg of his motion in
Figures 1 and 2.

Notice that there are two general types of temporal con-
straints used in these concepts. One type establishes that
some condition holds in the present, such as the passer hav-
ing possession of the ball and moving south in dropped-back.
The second type of constraint establishes an ordering among
events, such as in the definition of dropped-back, in which
the passer must receive the ball snap prior to taking posses-
sion of the ball. This precludes the center (C), who snaps the
ball to the quarterback, from taking the ball himself and mov-
ing backward. Other types of constraints, such as requiring
specific events to occur at specific times, are possible but we
have found them to be less useful in interpreting behavior.

Table 2 shows the available percepts and beliefs produced
by running inference over the concepts shown in Table 1.

Percepts:

(time 115)

(ball BALLI carriedby QB)

(agent QB direction S team OFFENSE action RUN)
Beliefs:

(AGENT-ACTION QB MOVE) 115 NOW
(AGENT-DIRECTION QB S) 115 NOW
(MOVED QB S) 115 NOW
(POSSESSION QB BALLI1) 115 NOW
(SNAP QB BALLI) 115 NOW
(DROPPED-BACK QB BALL1) 115 NOW
Percepts:
(time 116)

(ball BALLI carriedby QB)
(agent QB direction S team OFFENSE action RUN)
Beliefs:

(AGENT-ACTION QB MOVE) 115 NOW
(AGENT-DIRECTION QB S) 115 NOW
(MOVED QB S) 115 NOW
(POSSESSION QB BALLI) 115  NOW
(POSSESSION-BEFORE-NOW BALLI) 116 NOW
(SNAP QB BALL1) 115 115
(DROPPED-BACK QB BALLI) 115 NOW
Percepts:
(time 177)

(ball BALLI carriedby QB)
(agent QB direction S team OFFENSE action RUN)
Beliefs:

(AGENT-ACTION QB MOVE) 115 NOW
(AGENT-DIRECTION QB S) 115 NOW
(MOVED QB S) 115 NOW
(POSSESSION QB BALLI) 115 NOW
(POSSESSION-BEFORE-NOW BALL1) 116 NOW
(SNAP QB BALLI) 115 115
(DROPPED-BACK QB BALLI) 115 NOW
Percepts:
(time 178)
(ball BALLI1 carriedby QB)
(agent QB direction S team OFFENSE
action PREPARE-TO-PASS)
Beliefs:
(AGENT-ACTION QB MOVE) 115 177
(AGENT-ACTION QB SCRAMBLE) 178 NOW
(AGENT-DIRECTION QB S) 115 NOW
(MOVED QB S) 115 177
(POSSESSION QB BALLI) 115 NOW
(POSSESSION-BEFORE-NOW BALL1) 116 NOW
(SNAP QB BALLI) 115 115
(DROPPED-BACK QB BALLI) 115 177

Notice that a single temporal belief state is sufficient to re-
construct the sequence of events that led to the current state,
although not all of the details would necessarily be available.
To interpret the entire 6.73 second play (202 frames) based on
the 44 provided concepts, ICARUS requires 55.4 CPU seconds
to generate a total of 185 temporal beliefs. This is clearly
slower than humans, although even human performance in
this task is highly variable. Coaches and broadcast announc-
ers can often interpret plays in real time, but many viewers
rely on help from announcers and instant replay to see the de-
tails of a given play. We revisit the question of efficiency in



Table 3: Concept definition for drop-back-completed.

s ?passer has finshed dropping back after receiving the snap
((drop-back-completed ?passer ?ball 7n-steps)
rrelations  (((snap ?passer ?ball) ?snap-start ?snap-end)
((possession ?passer ?ball) ?poss-start ?poss-end)
((moved-distance ?passer n-steps S)
Tmov-start ?mov-end))
:constraints ((< ?snap-end ?poss-start)
(< Mmov-end ?poss-end)))

the next section.

Just as there are different types of temporal constraints that
than can be used in concept definitions, there are also dif-
ferent types of beliefs that arise. Some beliefs indicate the
occurrence or completion of events. For example, snap indi-
cates the cycle on which the ball snap was completed. Other
beliefs indicate the time period over which some event oc-
curred. For example, dropped-back indicates the period of
time during which the quarterback had possession of the ball
and moved backward from the line of scrimmage. The dif-
ference often arises from the specific constraints employed,
although additional relations may also be required to recog-
nize that some activity or event has completed.

This distinction is important in the context of execution,
however. Skills represent methods for achieving particular
beliefs, and ICARUS stops executing a skill when its goal
is achieved. This means that if ICARUS were to execute a
skill for dropped-back, then the skill would stop executing
on cycle 115, when the quarterback first takes possession of
the ball and starts moving backward. In practice, the skill
must continue executing until the quarterback completes his
drop-back. A separate concept, drop-back-completed, which
is shown in Table 3 and only evaluates to true after the quar-
terback completes the entire drop-back, is required to serve
as the head of the skill.

Discussion

The integration of temporal memory and reasoning into
ICARUS is more a question of generalizing the existing ar-
chitecture than of adding new modules and mechanisms. The
knowledge representation expands to accommodate temporal
information, but no new structures or memories are required.
Likewise, the revised inference module performs additional
steps, but relies on the same fundamental procedures. The ex-
ecution module requires no modification, relying instead on
information passed through concepts and beliefs to achieve
temporal goals.

Looking deeper into the architecture, integrating the new
temporal capacity into the learning and problem solving mod-
ules should similarly be questions of generalization. Each
module depends on both concepts and skills. In both cases,
the parts of the modules that depend on concepts must be
modified to use the information contained in the temporal
constraints. Specifically, the constraints will inform the par-
tial order in which subgoals should be stored (skill learning)

or considered (problem solving). The portions of the mod-
ules that depend on skills will not require substantial change.
Further research is needed to determine the details of the in-
tegration, but we do not anticipate any major changes to the
content of the architecture.

The relatively uncomplicated integration of temporal rep-
resentation and reasoning capabilities into ICARUS suggests
that some of the architecture’s other assumptions and com-
mitments are also beneficial. In particular, the distinction be-
tween conceptual and skill memories substantially simplifies
the integration by separating the potentially complex tempo-
ral constraints and associated reasoning issues from the skill
knowledge that uses the inferred beliefs. Likewise, the close
relationship between the two types of knowledge, and the
strong interdependence between inference and execution al-
lows both modules to exploit the temporal information.

As noted earlier, a single temporal belief state is sufficient
to reconstruct the sequence of events that led to the current
state, although some details may be missing. This is con-
sistent with Bartlett’s (1932) theory of reconstructive mem-
ory, which states that only some information about the past
is available in memory and the mind reconstructs the missing
parts. However, ICARUS’ ability to remember perfectly all
beliefs throughout an episode is not psychologically plausi-
ble. One area of future work then is to add a mechanism for
forgetting to belief memory. Bartlett’s theory suggests that
more detailed beliefs tend to be lost and reconstructed while
the more abstract, big-picture beliefs that form the core of an
experience are retained.

There are several other avenues for future work with re-
spect to temporal beliefs and concepts in ICARUS. One such
area relates to the intentions of an agent with respect to ex-
ecution. Currently , ICARUS does not have access to goals
that were either achieved or abandoned in the past. Allow-
ing the execution engine to generate new temporal beliefs
that represent the intentions of the agent lets ICARUS both
know and reason about past goals. The additions of time
stamped intentions to belief memory also makes a new class
of goals available to the architecture. For example, the goal
work on homework until dinner is ready, states that [CARUS
should maintain the intention to complete homework (which
implies execution of skills for completing homework) until a
specific event is satisfied. This is distinctly less restrictive of
an agent’s behavior than a goal of complete homework before
dinner.

A second line of future work regards the retrieval of be-
liefs from the episodic memory. Currently, ICARUS uses the
same pattern matching process that it used prior to switch
to temporal belief memory. In practice, the temporal belief
memory holds far more information than in earlier versions.
As a result, the cost of matching (inferring) concepts grows
steadily as beliefs get added to the memory. Soar employs a
recency-biased retrieval mechanism that helps to reduce the
amount of computation required for determining whether an
episode is relevant (Nuxoll & Laird, 2007). A similar mech-



anism may be beneficial for ICARUS, although the matching
details would be different since ICARUS retrieves individual
beliefs rather than entire episodes.

A related issue concerns the architecture’s current ap-
proach of processing each perceptual state in its entirety, re-
gardless of the amount of processing time available. In the
case of play recognition, even coaches may be unable to rec-
ognize all of the details of a given play in real-time. In-
stead, they process the most salient features of the play dur-
ing the initial viewing, and then focus on finding more de-
tailed behaviors during subsequent reviews. Time-sensitive
application of conceptual knowledge and inference is partic-
ularly important in the context of a temporal belief memory,
as the volume of beliefs stored and retrieved is significantly
increased. This suggests that ICARUS requires a utility-based
inference process whereby concepts with higher utility are
applied first, and low utility concepts only get applied to the
current stimulus if time permits.

Concluding Remarks

The ability to remember past experiences and to reason about
relationships over time is a fundamental cognitive capability
that humans rely on for a variety of tasks. However, very
few cognitive models or intelligent systems have been devel-
oped to model this capability. In this paper, we showed how
to integrate an explicit representation of time and a temporal
reasoning mechanism into the ICARUS architecture. [CARUS’
temporal belief memory is equivalent to an episodic memory,
and the architecture’s ability to refer to past beliefs individu-
ally rather than only in the context of a larger episode makes
our implementation of episodic memory more flexible than
others. We also argued that the relatively simple integration
of temporal reasoning into ICARUS suggests that other as-
pects of the architecture are also particularly beneficial. Sub-
stantial evaluation will be required to confirm these points,
but our initial tests and demonstrations are encouraging. Fi-
nally, the integration of temporal reasoning capabilities into
ICARUS opens a wide variety directions for future research
on the architecture.
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